
Visualizing Page Replacement Techniques based
on Page Frequency and Memory Access Pattern

Ruchin Gupta, Narendra Teotia

Information Technology, Ajay Kumar Garg Engineering College
Ghaziabad, India

Abstract— Virtual memory technique is used by many
operating systems. This technique requires an efficient page
replacement technique because it severely affects the
performance of a computer system. Some of the page
replacement techniques are first in first out, least recently
used, optimal etc. Optimal has already been proven to be the
best. Considerable research has been done to evaluate theses
policies and to develop new ones based on recency, frequency,
token, and locality model parameters etc. This paper uses a
histogram (based on page frequency) and memory access
pattern based approach to visualize and to compare least
recently used and optimal policies to determine their
behaviors. The simulation uses reduced SPEC2000
benchmark traces. Results show that histogram of least
recently used and optimal policy equalizes as number of
frames increases. Optimal policy histogram equalizes more
rapidly than the histogram of least recently used one. Also
pages of large frequency of occurrence contribute much to the
total number of page faults in both least recently used and
optimal page replacement algorithms. It visualizes and
concludes that lru follows optimal in memory access pattern
for page faults but with an increased number of frames in
comparison to optimal.

Keywords—operating system, lru,page replacement

algorithm.

I. INTRODUCTION
Operating system uses the concept of virtual memory to

provide an illusion to a user having a very large amount of
main memory available and allowing him/her to execute a
program to be partially there in main memory [1]. In most
of the operating systems virtual memory in implemented by
demand paging. There are several advantages of using this
concept like less I/O, efficient resource utilization etc.
Performance of virtual memory is affected by the choice of
page replacement technique used. There are several page
replacement techniques suggested by different researchers.
Elizabeth J. O'Neil1, Patrick E. O'Neil1, Gerhard Weikum
uses LRU-K page replacement algorithm or database disk
buffering [2]. Sedigheh Khajoueinejad, Mojtaba Sabeghi,
Azam Sadeghzadeh used fuzzy cache replacement policy
[3]. Optimal technique is proven to be the best but it can not
be implemented because it requires future knowledge of the
reference string. Least recently used policy approximates it
and that is the reason different variations of lru have been
implemented. It is well known however that there are many
situations where lru behaves far from optimal [4]. Under lru
an allocated memory page of a program will become a
replacement candidate if the page has not been accessed for
a certain period of time under two conditions: (1) the
program does not need to access the page; and (2) the
program is conducting page faults (a sleeping process) so

that it is not able to access the page although it might have
done so without the page faults. However, lru page
replacement implementations do not discriminate between
two types of lru pages and treat them equally [5]. So it
means that lru can be made closer to optimal policy by
making improvement in to that. Some page replacement
policies and some other definitions are given below.
A. First in, First out (fifo)

In this when a page is needed, the page that has been in
memory for the longest period of time is selected for
replacement. The reason is that a page that has only recently
been swapped in will have a higher probability of being
used again soon.
B. Least Recently Used (lru)

Least recently used page replacement policy is based on
the assumption that the page reference pattern in the recent
past is a mirror of the pattern in the near future. Pages that
have been accessed recently are likely to continue to be
accessed and ought to be kept in physical memory.
C. Optimal method

This policy selects a page for replacement which will be
used after the longest period of time. Since this requires
future knowledge of the reference string, this can not be
implemented in the system. Hence this policy is used for
comparative study only.
D. Memory Access Pattern

The memory access pattern shows how different pages
are used as the application executes. X axis shows the
progress of time while the Y axis shows which page
numbers are used at different times during the execution of
an application. It shows the memory access pattern of an
application during execution of that particular application.
E. Histogram

The histogram is very popular in digital imaging and
other subjects. A histogram for any given data set shows the
frequency of occurrence of every element in the given data
set. It gives a clear idea about the high frequency element
and low and medium frequency elements for a given data
set. It is assumed that data set contains similar kind of data
in the given data set.

II. SIMULATOR

 Here we develop a simulator that reads a memory trace
and simulates the action of a virtual memory system with a
single level page table in the single programming model.
The simulator keeps track of what pages are loaded into
memory. As it processes each memory event from the trace,
it should check to see if the corresponding page is loaded. If
not, it should choose a page to remove from memory. Here
we take all pages and page frames of 4 KB size.

Ruchin Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 886-890

www.ijcsit.com 890

We used trace-driven simulations to obtain results. The
traces were generated with the SimpleScalar toolset [6]
using a simple in-order processor model. In all experiments,
the page size was set to 4KB, which is the page size used in
the Simple Scalar simulators.

The set of benchmarks used is a subset of the SPEC
2000 benchmark suite. We used reduced input data sets and
such reduced inputs were not provided for all benchmarks.
In order to reduce the simulation time, we used the large
reduced input datasets described in [7]. The execution
characteristics of these reduced input datasets are similar to
the execution profiles of the SPEC 2000 reference datasets.

It implements 2 page replacement algorithms least
recently used and optimal. The simulator is written in C in
MS-DOS environment.

Numbers of frames are varied and no of page faults are
calculated. Different traces are taken as inputs and numbers
of page faults are calculated. Also MATLAB is used to plot
memory access pattern plot for different traces and to plot
histograms for page fault behavior of different traces.

Each trace obtained from the SPEC2000 benchmark is a
real recording of a running program. Real traces are
enormously big having billions and billions of memory
accesses. However, a relatively small trace is enough. Each
trace only consists of one million memory accesses. Traces
are gcc.trace.gz, swim.trace.gz , bzip.trace.gz.

Each trace is a series of lines, each listing hexadecimal
memory addresses followed by R or W to indicate a read or
a write. For example, gcc.trace trace starts like this:

0041f7a0 R 13f5e2c0 R 05e78900 R 004758a0 R

III. SIMULATION RESULTS
Applications swim, gcc, bzip show different memory

access patterns. Swim application shows quite a stable
pattern of memory access. Also different applications have
different number of pages. Bzip application exhibits more
correlated access than swim and gcc application. Figure 1,
2, 3 shows the memory access pattern for reduced swim,
gcc, bzip traces.

Figure 4, 5, 6 shows histograms for 3 applications swim,
gcc, and bzip respectively. From figure 7 to 24 it shows the

histograms for page faults for different traces using different
number of frames using lru and optimal. From figure 25 to
42 it shows the memory access patterns for page faults of
different traces using lru ,optimal with different number of
frames. From figure 25 to 40 each vertical line shows a page
fault and gap or valley indicate no page fault. X axis here
shows the refernce time while y axis shows the page
number.

 From figure 4, 5, 6 it is clear that a few pages are used
very heavily while few pages are used very rarely .It is
clear from figure 10 page numbers near 100000 have very
high frequency of occurrence .Also these page numbers are
being used quite stably over a uniform pattern.

Also from figure 7, 8, 9, it is observed hat as no. of
frames increase for lru, page faults occur on same pages but
with less frequency .Also as no of frames increases, lru
equalizes no of page faults for different pages.

From figure 10, 11, 12 (histogram for page faults for
optimal), It is clear that optimal also equalizes the no of
page faults as no of frames increases but more than lru.

For lru in figure 7, the highest no of page faults are not
generated for the highest frequency of occurrence page
numbers. Also from figure 7, 8, 9 it is concluded that the
page numbers on which more no. of page faults occur
change with the increase in no. of frames.

From figure 13, 14, 15,16,17,18 it is clear that both lru
and optimal generate largest no of page faults for pages not
having the highest frequency of occurrence. Also in both, as
no of frames increases the pages on which largest no of page
faults occur remain almost same.

From figure 19, 20, 21, it is clear that for 5 frames lru
generates largest no of page faults for pages of the highest
frequency of occurrence. Also for lru, as no of frames
increases, the pages on which more no. of page faults occur
change. The same is true for optimal policy in figure 22, 23,
24. Figure 25 to 42 show that lru approximates optimal by
generating large number of page faults common to optimal.
For swim trace; memory access patterns of lru and optimal
are quite close as number of frames increases.

Fig. 1. swim application Fig. 2. gcc application Fig. 3. bzip applicatipon

 Fig. 4. swim application histogram Fig. 5. gcc application histogram Fig. 6. bzip application histogram

Ruchin Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 886-890

www.ijcsit.com 891

 Fig. 7. Swim using lru and frames =5 Fig. 8. Swim using lru and frames =15 Fig. 9. Swim using lru and frames =5 0

Fig. 10. Swim using optimal and frames =5 Fig. 11. Swim using optimal and frames =15 Fig. 12. Swim using optimal and frames =50

Fig. 13. Gcc using lru and frames =5 Fig. 14. Gcc using lru and frames =15 Fig. 15. Gcc using lru and frames =50

Fig. 16. Gcc using optimal and frames =5 Fig. 17. Gcc using optimal and frames =15 Fig. 18. Gcc using optimal and frames =50

Fig. 19. Bzip using lru and frames =5 Fig. 20. Bzip using lru and frames =15 Fig. 21. Bzip using lru and frames =50

Fig. 22. Bzip using optimal and frames =5 Fig. 23. Bzip using optimal and frames =15 Fig. 24. Bzip using optimal and frames =50

Ruchin Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 886-890

www.ijcsit.com 892

Fig. 25. bzip using lru and frames=5 Fig. 26 bzip using lru and frames =15 Fig. 27. bzip using lru and frames = 50

Fig. 28. gcc using lru and frames= 5 Fig. 29. gcc using lru and frames = 15 Fig. 30. gcc using lru and frames =50

Fig. 31. swim using lru and frames =5 Fig. 32. swim using lru and frames =15 Fig. 33. swim using lru and frames =50

 Fig. 34. bzip uing optimal and frames =5 Fig. 35. bzip using optimal and frames =15 Fig. 36. bzip using optimal and frames =50

 Fig. 37. gcc using optimal and frames =5 Fig. 38.gcc using optimal and frames =15 Fig. 39. gcc using optimal and frames =50

Ruchin Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 886-890

www.ijcsit.com 893

Fig. 40. swim using optimal and frames =5 Fig. 41. swim using optimal and frames =15 Fig. 42. swim using optimal and frames =50

CONCLUSIONS
It is observed that optimal and LRU both may and may

not generate largest no of page faults on page numbers of
the highest frequency and it depends upon memory access
pattern. It is found that as number of frames increases, both
lru, optimal generates page faults on almost the same page
numbers with less number of page faults. For both lru and
optimal; the number of page faults on pages of high
frequency of occurrence change with no. of frames.

It concludes that pages of high frequency of occurrence
contribute much to the total number of page faults for lru
policy. Also high frequency pages contribution to the total
number of page faults varies with the number of frames
present in main memory. The same applies to the optimal
policy.

It is found that pages of high frequency of occurrence
contribute a good amount to the total no. of number of page
faults for both lru and optimal policies. Also in some cases,
contribution of high frequency pages to total no of page
faults is less in optimal than lru policy.

It is also observed that histograms for both lru and
optimal policies equalize as the number of frames increases.
Also histogram for optimal policy equalizes more rapidly
than lru. It is also observed that lru well approximates

optimal. Lru generates a large number of same page faults
(as in optimal) but with an increased number of frames than
compared to optimal.

To the best of authors’ knowledge; no such kind of work
has been reported in the literature hence comparative study
to the previous work is not possible.

REFERENCES

[1] Abraham Silberschatz, Peter Baer, 1999, Operating System Concepts
(5th Ed.).New York: John Wiley & Sons, Inc.

[2] Elizabeth J. O'Neil1, Patrick E. O'Neil1, Gerhard Weikum, the LRU-
K Page Replacement Algorithm For Database Disk Buffering,
SIGMOD Washington, DC, USA 1993 ACM.

[3] Sedigheh Khajoueinejad, Mojtaba Sabeghi, Azam Sadeghzadeh, A
Fuzzy Cache Replacement Policy and its Experimental Performance
Assessment, 2006 IEEE.

[4] Ben Juurlink, Approximating the Optimal Replacement Algorithm,
CF’04, April 14–16, 2004, ACM 1581137419/ 04/0004.

[5] Song Jianga,, Xiaodong Zhangb,, Token-ordered LRU: an effective
page replacement policy and its implementation in Linux systems,
2004 Elsevier .

[6] D. Burger and T.M. Austin. The SimpleScalar Tool Set, Version 2.0.
Technical Report 1342, Univ. of Wisconsin-Madison, Comp. Sci.
Dept., 1997.

[7] AJ KleinOsowski, John Flynn, Nancy Meares, and David J. Lilja.
Adapting the SPEC 2000 Benchmark Suite for Simulation-Based
Computer Architecture Research. In Proc. Workshop on Workload
Characterization, Int. Conf. on Computer Design (ICCD), 2000.

Ruchin Gupta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 886-890

www.ijcsit.com 894

